
ÍÂÂÂ"Î

Fecha: 14 de septiembre de 2020

COMISIÓN DE SELECCIÓN DE PROGRAMADORES

Convocatoria pública de 10 de junio de 2019 para la provisión de once plazas de
Programador con destino en el Centro de Tecnologías de la Información y de las

Comunicaciones de la Secretaría General del Congreso de los Diputados.

Cuarto Ejercicio

Nombre: Firma:

Apellidos:

DNI:

Instrucciones:

1. No abra este cuestionario hasta que le sea indicado.

2. No escriba ni haga ninguna marca o alteración de los códigos de barras impresos en cada
hoja del cuestionario.

3. El enunciado del ejercicio consta de una única página.

4. El tiempo de realización de este ejercicio es de 45 minutos .

5. Rellene todos los datos de la portada y entréguela cuando se le solicite, antes de comenzar la
realización del ejercicio.

6. Puede utilizar todas las hojas en blanco que considere necesario para la realización del
ejercicio. Ponga en cada una de ellas el número de orden.

7. Al finalizar el ejercicio, deberá entregar las hojas de respuestas y el enunciado del ejercicio,
los cuales serán grapados entre sí y guardados en un sobre cerrado.

ÍÂÂÂ"Î

ÍÂÂÂ"Î

If everyone hates it, why is OOP still so widely spread?
In the August edition of Byte magazine in 1981, David Robson opens his article, which became the
introduction of ‘Object-Oriented Software Systems’ for many, by admitting up front that it is a
departure from what many familiar with imperative, top-down programming are used to.

“Many people who have no idea how a computer works find the idea of object-oriented
programming quite natural. In contrast, many people who have experience with computers initially
think there is something strange about object oriented systems.”

It is fair to say that, generations later, the idea of organizing your code into larger meaningful
objects that model the parts of your problem continues to puzzle programmers. If they are used to
top-down programming or functional programming, which treats elements of code as precise
mathematical functions, it takes some getting used to. After an initial hype period had promised
improvements for modularising and organising large codebases, the idea was over applied. With
OOP being followed by OOA (object-oriented analysis) and OOD (object-oriented design) it soon
felt like everything you did in software had to be broken down to objects and their relationships to
each other. Then the critics arrived on the scene, some of them quite disappointed.

Some claimed that under OOP writing tests is harder and it requires extra care to refactor. There is
the overhead when reusing code that the creator of Erlang famously described as a case when you
wanted a banana but you got a gorilla holding the banana. Everything comes with an implicit,
inescapable environment.

Other ways of describing his new way of solving problems include the analogy between an
imperative programmer as “a cook or a chemist, following recipes and formulas to achieve a desired
result” and the object oriented programmer as “a greek philosopher or 19th century naturalist
concerned with the proper taxonomy and description of the creatures and places of the
programming world.”

Was the success just a coincidence?

OOP is still one of the dominant paradigms right now. But that might be due to the success of
languages who happen to be OOP. Java, C++ and Kotlin rule mobile for Android and Swift and
Objective-C for iOS so you can’t develop software for mobile unless you understand the object-
oriented approach. For the web, it’s JavaScript, Python, PHP and Ruby.

Asking why so many widely-used languages are OOP might be mixing up cause and effect. Richard
Feldman argues in his talk that it might just be coincidence. C++ was developed in the early 1980s
by Bjarne Stroustrup, initially as a set of extensions to the C programming language. Building on
C , C++ added object orientation but Feldman argues it became popular for the overall upgrade
from C including type-safety and added support for automatic resource management, generic
programming, and exception handling, among other features.

ÍÂÂÂ"Î

	If everyone hates it, why is OOP still so widely spread?
	Was the success just a coincidence?

